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ABSTRACT

In this paper, we present a novel deep-learning framework that incorporates quantified uncertainty for predicting the mechanical proper-
ties of nanocomposite materials, specifically taking into account their morphology and composition. Due to the intricate microstructures of
nanocomposites and their dynamic changes under diverse conditions, traditional methods, such as molecular dynamics simulations, often
impose significant computational burdens. Our machine learning models, trained on comprehensive material datasets, provide a lower com-
putational cost alternative, facilitating rapid exploration of design spaces and more reliable predictions. We employ both convolutional neural
networks and feedforward neural networks for our predictions, training separate models for yield strength and ultimate tensile strength. Fur-
thermore, we integrate uncertainty quantification into our models, thereby providing confidence intervals for our predictions and making
them more reliable. This study paves the way for advancements in predicting the properties of nanocomposite materials and could potentially
be expanded to cover a broad spectrum of materials in the future.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0177062

I. INTRODUCTION

Nanocomposite materials, which exhibit unique properties,
have become prevalent in a wide range of engineering applications,
including but not limited to the biomedical and aerospace sectors.' *

of factors affecting mechanical properties can be addressed by high-
fidelity modeling, which offers a more comprehensive approach by
incorporating these additional factors into the prediction process.
High-fidelity modeling techniques,” such as Molecular Dynamics

L¥'¥€:61 ¥20T Uole L0

The task of understanding and predicting the properties and behav-
iors of these materials poses a substantial challenge to materials
research due to the intricate microstructures of nanocomposites
and their dynamic changes under diverse conditions. Traditionally,
the prediction of mechanical properties of nanomaterials has relied
heavily on empirical equations. A notable example is the Hall-Petch
relation,” which correlates yield stress with the average grain size,
indicating that smaller grains typically strengthen a material by
obstructing dislocation motion. However, these types of empirical
models do not consider crucial aspects such as material composi-
tion and internal defects. This gap in considering a broader range

(MD) simulations and first-principle Density Functional Theory
(DFT) calculations,” while effective, also impose a significant com-
putational burden when attempting to predict structure-property
relationships in nanocomposite materials. This immense compu-
tational demand often limits the exploration of the design space
inherent to these materials. As a result, Machine Learning (ML)
methods,® with their capability for predicting material properties
at a markedly lower computational cost, are becoming increas-
ingly significant in materials research.” "' Consequently, ML mod-
els,'”” which are trained on extensive material datasets to anticipate
structure—-property relationships, are providing new avenues for
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the rapid exploration of large design spaces.”” These methodolo-
gies facilitate the development of advanced nanocomposite materials
with highly tailored properties.”"*

ML models, utilizing training data obtained from continuum-
level Finite Element (FE) simulations, have been developed to
predict a broad range of mechanical properties for composite
materials.” ** Yang et al., for instance, applied conditional gener-
ative adversarial networks (cGANSs) to anticipate stress and strain
fields in hierarchical composites.*'” Likewise, Bhaduri et al. uti-
lized Convolutional Neural Networks (CNN) to predict the stress
field of fiber-reinforced composites.'” Drawing inspiration from the
Modified National Institute of Standards and Technology (MNIST)
dataset widely used in the computer vision research commu-
nity,”’ Lejeune et al. developed a mechanically relevant equivalent,
“Mechanical MNIST,”'*"” for heterogeneous materials using the
finite element method. Leveraging these datasets, they used various
deep-learning models, including CNN, to predict total changes in
strain energy'® and full-field displacement.'”

However, ML models trained on continuum-level datasets
may not accurately characterize nanocomposite materials’ behav-
ior as these simulations often overlook the discreteness of matter
and defects predominantly found at the nanoscale. In response,
researchers have trained ML models on datasets derived from atom-
istic simulations, like MD simulations. These models have been
employed to predict atomic-level material quantities, such as grain
boundary energy’*”’ and segregation energy.” Beyond predicting
individual quantities, ML models have been further developed to
predict full-field atomic scale quantities like stress distribution””**
and fracture behavior.” " For instance, Dewapriya et al. utilized
c¢GANs to predict the behavior of defects in graphene materi-
als and forecast the corresponding mechanical stress distribution,
leveraging training data from MD simulations.”

Owing to the various sources of uncertainty inherent in
atomistic simulations at the nanoscale, considering these uncer-
tainties becomes essential for providing more reliable predic-
tions of nanocomposite materials’ properties.”””* Previous work by
Winovich et al. integrated quantified uncertainty into the devel-
opment of CNN models for solving partial differential equations
on different domains,’”> and the Gaussian Process method has
been integrated into CNN models to obtain the model uncer-
tainty by Yin and Du’® Nonetheless, limited research has been
conducted concerning the inclusion of uncertainty in predicting
structure—property relations for materials at the nanoscale. Tavaza
et al.,’* Tran et al.,*> and Gruich et al.’’ have previously employed
machine learning models to predict material properties such as bulk
modulus, formation energy, and adsorption energies, incorporating
uncertainty quantification (UQ). These studies primarily focused on
parameters or small-scale representations of atomic or molecular
structures. In contrast, our research extends this scope by predicting
material properties at a larger scale, utilizing images to capture the
microstructural complexity inherent at the nanoscale. This approach
allows for a more comprehensive representation of the materials
being studied.

In this study, we aim to develop a deep learning framework
that incorporates quantified uncertainty to predict the properties
of nanocomposite materials under mechanical stress, taking into
account the morphology and composition of these materials. While
our focus primarily lies on predicting the mechanical properties
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of a model nanocomposite material, the framework we develop
holds potential applicability for predicting diverse properties across
a broad spectrum of materials.

Il. METHODOLOGY
A. Atomistic models and simulations

The two-phase nanocomposite material of Cu-Zr, compris-
ing the crystalline Cu phase and the amorphous CugsZr36 phase, is
chosen as the model material system in this study due to its engineer-
ing applications.”*”” To construct these two-phase nanocomposite
models, we divide the whole region into two distinct phases using the
following approach. Our approach utilizes images from the MNIST
dataset,” a resource widely recognized not only in computer vision
research but also in mechanical research on heterogeneous materi-
als, as exemplified by the mechanical MNIST framework developed
by Lejeune et al.'>'”* In this context, mechanical MNIST employs
the MNIST dataset for pattern generation, facilitating finite ele-
ment simulations and the construction of machine learning models
that calculate mechanical properties, such as force fields and crack
paths. Drawing inspiration from this framework, our methodology
repurposes the MNIST dataset using its hand-written digits not as
numerical representations but as diverse microstructural patterns.
This innovative use of MNIST enables us to efficiently generate
a broad range of simple yet varied images, which are integral in
training our machine learning models for simulating mechanical
properties of heterogeneous materials.

The MNIST dataset of images contains handwritten digits
ranging from 0 to 9. Its suitability for this study stems from its
ability to encapsulate both substantial changes in digit representa-
tion and minor variations in geometries and orientations for the
same digit. Figure 1(a) is an example of an image from the MNIST
database, which measures 28 x 28 pixels. The original images in the
dataset are converted into binary images, each containing two phases
[Fig. 1(b)], using a threshold of 128 to differentiate between these
two phases. The binary images from the MNIST dataset are used as
input for the ML model.

To generate the atomic model for Cu/CuesZr3¢ corresponding
to the binary images, we used the following procedure. First, we
generated an initial, pure Cu model. The unit cell length for Cu is
3.615 A. We constructed a Cu atomic model with the dimensions
36.15 x 36.15 x 1.445 nm”. Subsequently, the atoms were categorized
into two groups based on their respective positions in the corre-
sponding binary images. The atomic model was divided into 28 x 28
small squares corresponding to the binary image. The atoms in the
black regions remained Cu, while the atoms in the white regions
(representing the digits) were replaced by CuesZr3e. In the CugsZrss
region, 36% of the Cu atoms were replaced by Zr. Furthermore, to
construct a model with the correct density for the CussZr36 region,
24% of atoms were randomly deleted to account for the different
densities of Cu and CugsZrss. Figures 1(c) and 1(d) clearly illus-
trate that the digit region is a mixture of Cu and Zr atoms, while
the remaining area consists of pure, crystalline Cu.

After constructing the atomistic models for the two-phase
nanocomposite, we performed molecular dynamics (MD) simula-
tions to relax the models at a temperature of 300 K. This enabled
each atom to stabilize in an appropriate position. Following relax-
ation, we applied uniaxial tension with a strain of 0.2 to the atomic
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FIG. 1. Constructing atomistic models for nanocomposites utilizing the MNIST dataset of handwritten digits commonly employed within the computer vision community: (a)
depiction of images extracted from the MNIST dataset; (b) conversion of the images into binary bitmap format; (c) visualization of the atomic nanocomposite model illustrating
the spatial arrangement of Cu and Zr elements; (d) representation of the atomic nanocomposite model, with distinct coloring of the FCC and amorphous phases facilitated by

common neighbor analysis (CNA).

models. The tensile simulations of the nanocomposite materials pro-
duced the corresponding stress—strain curves, examples of which are
presented in Fig. 3. We obtained the values of both yield strength
and ultimate tensile strength (UTS) from these stress-strain curves.
For modeling the two-phase nanocomposite materials, we used the
Embedded Atom Method (EAM) potential. This interatomic poten-
tial can accurately predict the structure and energy for various ratios
of Cu and Zr atoms.”’ We performed all the atomistic simula-
tions using the open-source package, Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS).*?

B. Machine learning models for predicting
mechanical properties

In this study, our primary objective was to establish a foun-
dational framework for integrating uncertainty quantification into

neural network models for predicting material properties, specifi-
cally focusing on the mechanical properties of nanocomposites. To
this end, we employed basic Feedforward Neural Networks (FNN)
and CNN models due to their proven efficacy and simplicity. FNN
models comprise different sizes of fully connected layers, leaky rec-
tified linear unit (ReLU) activated layers, and dropout layers. The
input images are first transformed from a 2D matrix to a 1D vector.
Then, through iterative adjustments, the weights in the fully con-
nected layers calculate an accurate output. The detailed architecture
of the FNN model is shown in Table V in the Appendix.

On the other hand, CNN models are constructed using con-
volution layers, max-pooling layers, activation layers, and dropout
layers. Unlike FNN models, the input is not expanded initially;
convolution aids in feature extraction from the input, and pool-
ing layers are employed to reduce the size. Finally, fully connected
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layers reduce the size to 1 x 1 x 1 and provide the prediction. The
detailed architecture of the CNN model is presented in Table VI in
the Appendix.

In our study, we have allocated the training samples into train-
ing, validation, and testing sets, with 8000 samples for training, 2000
for validation, and 2000 for testing. This split was conducted ran-
domly to ensure an unbiased distribution of data across all sets.
For both FNN and CNN models, we trained two separate models
to predict the yield strength and ultimate tensile strength, respec-
tively. Each deep learning (DL) model was trained for at least 100
epochs with a batch size of 10 to ensure convergence. We used the
Mean Squared Error (MSE) as the loss function in our work during
the training process. In our study, we systematically tested vari-
ous combinations of learning rate, dropout probability, and neuron
count, with the learning rate decreasing to one-tenth of its previ-
ous value and dropout probability increasing in 5% increments. The
optimal combination was selected based on achieving the lowest
Mean Squared Error (MSE), ensuring an effective balance between
learning efficiency and model generalizability.

C. Development of uncertainty-integrated
deep-learning models

In this study, our primary objective is to incorporate the uncer-
tainty of ML predictions into the DL models. To achieve this, we
aim to calculate the probability of the DL predictions, enabling us
to provide confidence intervals for the predictions. This is based
on the ConvPDE-UQ framework developed by Winovich et al.”” By
assuming that the prediction follows a Gaussian distribution, we can
ascertain the distribution of our prediction using the mean and the
corresponding standard deviation. Here, we design two uncertainty-
integrated models named FNN-Prob and CNN-Prob. These models
predict both the mean and the standard deviation simultaneously.
The detailed architecture for the FNN-Prob and CNN-Prob models,
including uncertainties, is outlined in the Appendix, specifically in
Tables VII and VIII.

In this study, the framework for integrating uncertainty quan-
tification into machine learning models primarily revolves around
leveraging the inherent capabilities of neural networks, like FNN and
CNN models, to estimate uncertainty through their predictive out-
puts. This approach differs from existing methods, such as Gaussian
Processes (GPs). While GPs are well-known for their natural incor-
poration of uncertainty, our neural network-based method allows
for more flexibility and scalability, which is particularly beneficial for
complex datasets like those in material science. The computational
cost for GPs is scaled with N°, where N is the number of samples,
while our neural network-based method is only linearly scaled with
N. Hence, the proposed method can handle machine learning tasks
with large datasets.

The probabilistic model, including CNN-Prob and FNN-
Prob models, can be divided into two components: the first part
predicts the mean of predictions, akin to the classic CNN and FNN
models, and the second part calculates the standard deviation of
predictions. The latter shares the initial few layers with the mean
part and incorporates several additional fully connected layers for
predicting the standard deviation.

The CNN-Prob and FNN-Prob models were developed based
on the classic CNN and FNN architectures, each tailored to enhance

pubs.aip.org/aip/aml

prediction accuracy while integrating uncertainty quantification.
For example, the CNN-Prob model is a convolutional neural net-
work designed for probabilistic predictions, where it not only fore-
casts an outcome but also estimates the associated uncertainty. It
starts with convolutional layers that extract features from input data,
using filters that capture various aspects of the data through con-
volution operations. These are followed by activation functions like
ReLU to add non-linearity, and pooling layers that reduce the spa-
tial dimensions of the data, simplifying the network and reducing
computational load. The network also includes dropout layers to
mitigate overfitting by randomly omitting units during training.
After convolutional and pooling layers, the architecture transitions
to fully connected layers that interpret the features and make predic-
tions. In the CNN-Prob model, the final layer is designed to output
two values per prediction: one for the mean or expected value of the
prediction and another for the standard deviation, representing the
prediction’s uncertainty. This dual output allows the model to pro-
vide a confidence interval for each prediction, making it particularly
useful for applications where understanding the reliability of predic-
tions is crucial. For a thorough understanding of their architecture of
FNN-Prob and CNN-Prob models, the detailed configurations and
activation functions of these models are presented in Tables VII and
VIII in the Appendix.

A probabilistic loss function is utilized during training. Specif-
ically, the negative log estimated likelihood, as illustrated in Eq. (1).
Here, y represents the ground truth value, which is the correspond-
ing stress obtained from MD simulations, y symbolizes the predicted
mean value, and o signifies the predicted standard deviation. Analo-
gous to training the classic DL models detailed in Sec. II B, for both
FNN-Prob and CNN-Prob models, we trained two distinct models
to predict the yield strength and ultimate tensile strength, respec-
tively. Each model underwent at least 100 epochs of training with
a batch size of 10 to ensure convergence. We employed the Adam
optimizer during the training phase, and the learning rate decayed
each parameter group by 0.2 every 50 epochs,

(J’_ﬁ)z 1 )
BTy + Elog(me . (1)

Lossprop = —log p(y) =

Our approach to uncertainty prediction primarily utilizes prob-
ability loss, where the loss diminishes as the predicted mean j
approximates the actual value y, and the predicted variance &°
reaches an optimum level minimizing this loss. This optimal vari-
ance is directly influenced by the discrepancy between the prediction
and the ground truth; a smaller discrepancy leads to a lower critical
variance value. Initially, our models generate predictions with larger
standard deviations, but as training progress, these predictions grad-
ually align more closely with the ground truth. Concurrently, the
uncertainty range narrows. During testing, samples with character-
istics similar to those in the training set exhibit smaller UQ, while
those with less similarity display comparatively larger UQ, reflecting
the model’s confidence in its predictions based on familiarity with
the data.

Mean Absolute Error (MAE), Mean Squared Error (MSE),
Mean Absolute Percentage Error (MAPE), and R* are employed
to evaluate the model’s performance in predicting the mechanical
properties of nanocomposites. The formulations for these evaluation
metrics are outlined in Egs. (2)-(5). In these equations,  represents
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FIG. 2. Results from tensile simulations conducted on nanocomposite samples in the dataset: (a) distribution of yield strain and yield strength values; (b) distribution of

ultimate tensile strength and ultimate strain values.

the prediction, y is the ground truth, and ¥ is the average of all the
ground truth values,

MAE = abs(y - §), )

MSE = (y - )% 3)

MAPE = abs(}};j}), 4
S (y-7)

R=1-|Z (5)
> (y-y)

Il
—

lll. RESULTS
A. Atomistic simulations of nanocomposite materials

Tensile simulations were performed on 10000 atomistic
nanocomposite samples with varying geometries. The distribution
of both yield strength and ultimate tensile strength (UTS) obtained
from these samples is depicted in Fig. 2. Generally, as can be
observed from Fig. 2(a), a higher yield strength in a nanocomposite
sample corresponds to a higher yield strain. The yield strain ranges
from 0.08 to 0.12, while the yield strength varies from 3.8 to 8.5 GPa.
Additionally, Fig. 2(a) shows that all the data points fall below a
particular upper-bound straight line. Turning to Fig. 2(b), which
presents the distribution of ultimate tensile strength and ultimate
strain, the data points appear to cluster into two regions: left and
right. The majority of the data points in the left region exhibit a
similar pattern to the yield strength, but the data points in the right
region register much higher ultimate strains than those in the left.
The ultimate tensile strength ranges from 3.8 to 8.5 GPa, whereas

the ultimate strain fluctuates between 0.08 and 0.16. This range is
larger compared to the yielding strain observed in Fig. 2(a).

We further calculated the stress-strain curves for all the
nanocomposite samples and noticed two different major types of
these curves. The first type of stress—strain curve has only one maxi-
mum value, as illustrated by dashed-dotted curves 5 and 6 in Fig. 3.
The other type features two peaks, as demonstrated by solid and
dashed curves 1-4 in Fig. 3. We also observed that when the first
peak is higher than the second, as in solid curves 1 and 4, the
yield strength and ultimate tensile strength are identical. However,
if the second peak is higher, like in dashed curves 2 and 3, then
the yield strength and ultimate tensile strength differ. The appear-
ance of these two different types of stress—strain curves is tied to
the occurrence of twinning deformations, which create nano-sized
twinning boundaries in the samples. Twinning, a common strength-
ening mechanism under loading, significantly increases the ultimate
strain. Upon examining the atomistic structure of samples during
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FIG. 3. Comparative stress-strain curves of six nanocomposite samples within the
training set during tensile simulations.
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FIG. 4. The density distribution of (a) yield strength and (b) ultimate tensile strength in the dataset.

the simulation, we found that a significantly greater number of twin-
ning boundaries are formed in the samples with two peaks in their
stress—strain curves compared to the samples with only one peak.
As twinning formation can strengthen the material, a peak typically
appears on the stress—strain curves. This mechanism also explains
why the data points in the ultimate tensile strength plot in Fig. 2 are
divided into two regions.

B. Factors affecting the mechanical properties
of nanocomposite materials

In this section, we aim to study how different factors affect the
mechanical properties of nanocomposite materials. Figure 4 plots
the density distribution of both yielding and ultimate tensile strength

a) Yield strength

8
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g x
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s
56
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X % "
4 x * o x M
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in the training and test sets. Both yield strength and ultimate tensile
strength register their highest frequency between 5 and 5.5 GPa.
The digit depicted in the original images within the samples
is an important feature that directly influences the geometry of
nanocomposite models. Therefore, it is worthwhile to study how
this digit can affect both the yield strength and ultimate tensile
strength. To that end, we plotted the ultimate tensile strength and
yield strength across digits ranging from 0 to 9. As illustrated in
Figs. 5(a) and 5(b), both the yield strength and ultimate tensile
strength peak for digit 1, while all other digits demonstrate yielding
and ultimate tensile strength lower than 8 GPa. A possible expla-
nation for this could be that samples with the digit 1 exhibit the
simplest geometrical structure. However, based on the distribution
plotted in Fig. 5, it is not feasible to estimate stress solely through the
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FIG. 5. Distribution of (a) yield strength and (b) ultimate tensile strength correlated with the numerical values from handwritten digits.
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FIG. 6. The impact of the amorphous phase fraction on various mechanical properties: (a) yield strength, (b) Young's modulus, and (c) ultimate tensile strength.

digit in the image due to the extensive variance in stress prediction
for each digit.

We also studied the effect of the fraction of each phase in the
composite materials on mechanical performance. Different geomet-
rical patterns exhibit different ratios between these two phases in
the samples. In Fig. 6, we plot the distribution of yield strength,
Young’s modulus, and ultimate tensile strength in relation to the
fraction of the amorphous phase in the nanocomposite samples.
From Fig. 6, it can be observed that both yield strength and ulti-
mate tensile strength decrease as the fraction of the amorphous
phase increases. Most of the data points fall beneath a certain upper-
bound straight line. Regarding the distribution of Young’s modulus
in Fig. 6(b), a clear boundary is easily discernible at the top right
of the data cluster, although the range of distribution is smaller
compared to the plots of stresses. Furthermore, in all three plots in
Fig. 6, the lower bounds are unclear, making it difficult to predict
stresses or Young’s modulus based solely on the fraction of each
component. These results underscore the challenge of predicting
mechanical properties based on a few simple factors. Instead, it is
necessary to consider the more complex geometry of the samples to
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accurately predict their mechanical properties. To this end, we will
develop more intricate ML models to incorporate more information
regarding the geometry of two-phase nanocomposite materials in
predicting their mechanical properties.

C. Predicting mechanical properties
with classic DL models

Based on the MD simulation results from 10 000 nanocompos-
ite samples, we trained both classic CNN and FNN models to predict
their yield strength and ultimate tensile strength. The architecture of
these DL models and the training procedure have been discussed
in Sec. I B. As demonstrated in Fig. 7, the MSE loss for training
the classic CNN models diminishes with an increasing number of
training epochs. The training of CNN models for predicting both
yield strength and ultimate tensile strength reaches convergence
after ~100 epochs.

Figure 8 presents a comparison between the ground truth of
yield strength from MD simulations and predictions from the classic
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FIG. 7. MSE loss of training classical CNN models evolving with the number of epochs for predicting (a) yield strength and (b) ultimate tensile strength.
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FIG. 8. Comparison of classic CNN model predictions with ground-truth MD simulation results for (a) yield strength and (b) ultimate tensile strength in the training and test

sets.

TABLE . Comparative analysis of predictions from classic CNN and FNN models. Values in boldface represent better

outcomes comparing different ML models.

Train Test
MAE MSE MAPE R’ MAE MSE MAPE R?
CNN  Yield strength  0.1384 0.0307 0.0247 0.9551 0.1736 0.0482 0.0305 0.9326
UTS 0.1412 0.0322 0.0251 09518 0.1788 0.0521 0.0315 0.9264
FNN  Yield strength  0.0675 0.0079 0.0116 0.9885 0.1811 0.0539 0.0316  0.9246
UTS 0.0667 0.0076 0.0115 0.9886 0.1860 0.0582 0.0326 0.9178

CNN model. It can be observed that most data points are located
near the center line, indicating high prediction accuracy.

To further evaluate the models’ performance quantitatively, we
employed four evaluation metrics: MSE, MAE, MAPE, and R%. The
evaluation results are listed in Table I. The MAE for the training set
is 0.1384 for yield strength and 0.1412 for ultimate tensile strength.
For the test set, the MAE is 0.1736 and 0.1788, respectively. The
MAPE values for these parameters in the training set are 2.47% and
2.51%, respectively. Meanwhile, the MAPE for the test set is slightly
higher, at 3.05% and 3.15%, for the predictions of yield strength and
ultimate tensile strength, respectively.
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Furthermore, we trained classic FNN models to predict the
yield strength and ultimate tensile strength. Compared to the clas-
sic CNN models, the classic FNN model converges more slowly, as
shown in Fig. 9, taking ~200 epochs to converge.

The MAE, MSE, MAPE, and R? for predicting the yield strength
in the training set are 0.0675, 0.0079, 1.16%, and 0.9885, respec-
tively, which outperform the CNN model. A similar trend can also
be observed in UTS prediction. In the training set, the MAE, MSE,
MAPE, and R* are 0.0667, 0.0076, 1.15%, and 0.9886, respectively.
However, the FNN model does not perform as well as the classic
CNN model for the test set. The MAE, MSE, MAPE, and R? in the
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FIG. 9. Variation of MSE loss during the training of classic FNN models as a function of the number of epochs for predicting (a) yield strength and (b) ultimate tensile strength.
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FIG. 10. Comparison of prediction results using classic FNN models with MD simulation results in both the training and test sets: (a) yield strength and (b) ultimate tensile

strength.

prediction of yield strength are 0.1811, 0.0539, 3.16%, and 0.9246,
respectively. In the UTS prediction case, these metrics are 0.1860,
0.0582, 3.26%, and 0.9178, respectively. All these evaluation metrics
are slightly worse in the classic FNN model compared to the clas-
sic CNN model for the test set. Additionally, we can observe from
Fig. 9 that the discrepancy between the training and test sets in the
FNN model is much larger than in the classic CNN model. The FNN
model exhibits a smoother decrease in the MSE loss and achieves a
lower MAE loss in the training set, while the loss in the test set is
higher than with the CNN predictions. The result of the FNN pre-
diction, compared to the ground truth values from MD simulations,
is shown in Fig. 10. The comparative analysis displayed in Table I

indicates that, compared to the classic CNN model, the classic FNN
model performs slightly better for the training set but slightly worse
for the test set.

Figure 11 presents a detailed comparison of the distributions
of different evaluation metrics. As shown in Fig. 11(a), the CNN
model successfully predicts the distribution of yield strength for
the test set, and the predicted distribution generally matches the
distribution from MD simulations. Figure 11(b) plots the distri-
bution of absolute error, showing that the error in most of the
samples is smaller than 0.5 GPa. The percentage error is primar-
ily smaller than 10% for both training and test sets, as shown
in Fig. 11(c).
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FIG. 11. Yield strength prediction comparison between classical CNN [(a)—(c)] and classical FNN [(d)—(f)] models: (a) CNN predictions, [(b) and (c)] absolute error and
percentage error in CNN predictions (first row), (d) FNN predictions, and [(e) and (f)] absolute error and percentage error in FNN predictions (second row).

APL Mach. Learn. 2, 016112 (2024); doi: 10.1063/5.0177062
© Author(s) 2024

2,016112-9

L¥'¥€:61 ¥20T Uole L0


https://pubs.aip.org/aip/aml

APL Machine Learning ARTICLE

a)

0.8

0.6

0.4

0.2

Loss (Probability)

v -

[ 50 100 150 200 250 300
Epochs

pubs.aip.org/aip/aml

b)

0.225

—— train
—— val
0.200

_0.175
)

£ 0150
¢ 0.125

S
0.100
0.075
0.050

0.025 :
[} 50 100 150 200 250 300

Epochs

FIG. 12. Evolution of (a) probability loss and (b) MSE loss with the number of epochs in the CNN-Prob model.

In the training set, the maximum MAE and MAPE for the FNN
model are 0.437 GPa and 7.28%, respectively, both of which are
lower than the values obtained with the CNN model. However, in
the test set, the FNN model performs worse than the CNN model,
with a maximum MAE and MAPE of 1.059 GPa and 21.3%, respec-
tively. Both these values are higher than those of the CNN model. In
Fig. 11, itis clear that the data are more concentrated on the left side,
indicating lower error in the CNN result, whereas the FNN results
have a more widespread distribution.

In summary, both the CNN and FNN models can accurately
predict yield strength and ultimate tensile strength. However, while
the FNN model produces better results in the training set, the CNN
model shows superior performance in the test set, exhibiting lower
error.

D. Predictions with uncertainty-integrated DL models

While both CNN and FNN can provide reasonable predictions
of yield strength and ultimate tensile strength, the maximum error
can still reach 15.7% and 21.3%. Such accuracy may not be suffi-
cient in some applications. Since it is challenging to increase the

a) Predication of yield strength
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prediction accuracy of either CNN or FNN models, providing an
uncertainty region simultaneously can indicate which samples may
have a large error, which is crucial when selecting samples. For illus-
tration, we take yield strength as an example to display the results of
the probabilistic model.

The architecture of the CNN-Prob model with uncertainty is
discussed in Sec. II B. The primary part used to predict the mean
value is identical to the previously mentioned CNN model. The sig-
nificant difference here is the addition of three convolution layers
to predict the standard deviation simultaneously. Figure 12(a) illus-
trates the decrease in loss. It takes roughly 300 epochs to reach a
steady state, which is significantly longer than with the classic CNN
models. This could be because the CNN-Prob probabilistic model
requires two variables to be adjusted simultaneously—the mean
value and the standard deviation. We also display the decrease in
MSE loss in Fig. 12(b). Compared to the classic CNN model, it is
evident that this model has a lower MSE for both the training and
test sets.

A comparison of predictions of the CNN-Prob model with the
ground truth was plotted in Fig. 13(a). This comparison demon-
strates the capability of the CNN-Prob model to predict the yield
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FIG. 13. (a) Prediction results in both the training and test sets; (b) 60 samples with predicted boundaries of two standard deviations in the CNN-Prob model.
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TABLE II. Comparative analysis of predictions between CNN and CNN-Prob models. Values in boldface represent better

outcomes comparing different ML models.

Train Test
ML models MAE MSE MAPE R? MAE MSE MAPE R?
CNN 0.1384  0.0307 0.0247  0.9551 0.1736 0.0482 0.0305 0.9326
CNN-Prob 0.1523 0.0377 0.0270 0.9448 0.1641 0.0435 0.0287 0.9391
a) b)
1.2
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FIG. 14. Evolution of (a) MSE loss and (b) probability loss with the number of epochs in the FNN-Prob model.

strength of nanocomposite materials. Moreover, we plot some sam-
ples with the two standard deviation plus/minus bounds in both the
training and test sets in Fig. 13(b). Most of the samples’ confidence
intervals cover the ground truth value. 95% of samples in the training
set and 90% of samples in the test set fall within two standard devi-
ations of the ground truth, with the mean deviation equal to 0.227
and 0.232 GPa, respectively.

In addition to uncertainty, the model also shows commendable
performance in other areas. To further evaluate the models’ perfor-
mance quantitatively, we employed four evaluation metrics: MSE,
MAE, MAPE, and R%. The evaluation results are listed in Table II.

a) Predication of yield strength

The MAE, MSE, MAPE, and R? in the training set are 0.152, 0.0377,
2.70%, and 0.9448, respectively. In the test set, these metrics are
0.164, 0.0435, 2.88%, and 0.9391, respectively, which are better than
those of the classic CNN model.

We have also modified the FNN model to predict uncertainty
concurrently. The model’s architecture is detailed in Sec. IT B. Con-
sidering the inclusion of uncertainty, the modified FNN model
takes about 300 epochs to run, but the performance disparity
between the training and test results is larger than that of the
CNN-Prob probabilistic model, particularly. The results are shown
in Fig. 14. Furthermore, the probabilistic loss in the test set does
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FIG. 15. Comparison of predictions of the FNN-Prob model with the ground truth: (a) Prediction results in both the training and test sets and (b) 60 samples with predicted

boundaries of two standard deviations in the FNN-Prob model.
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not decrease after 100 epochs, and the variation becomes even
larger. Meanwhile, the probabilistic loss continues to decrease in the
training set. Generally, we need to halt model training to avoid over-
fitting, but the MSE continues to decrease in both the training and
test sets. To maintain the lowest MSE and keep the probabilistic loss
at a lower level, we continue running the model for 300 epochs.

In Fig. 15(a), we plot the results of comparing predictions of the
FNN-Prob model with the ground truth. Moreover, we plot some
samples with the two standard deviation plus/minus bounds in both
the training and test sets in Fig. 15(b). The majority of the samples’
confidence intervals cover the ground truth value. As shown in the
comparative analysis in Table 111, the MAE, MSE, MAPE, and R* in
the training set are 0.1306, 0.0282, 2.26%, and 0.959, respectively. In
the test set, these metrics are 0.209, 0.0718, 3.61%, and 0.900, respec-
tively. The FNN-Prob model’s performance is inferior to the original
FNN model if uncertainty is not considered. When compared with
the CNN probabilistic model, both models show similar MAE and
MAPE in the training set. However, the test set results differ greatly,
with the CNN-Prob probabilistic model outperforming the FNN-
Prob probabilistic model. Considering the uncertainty component,
the FNN probabilistic model exhibits a higher average standard

pubs.aip.org/aip/aml

deviation and a lower accuracy ratio, where the ground truth is
located within the two standard deviations plus/minus bounds of
prediction, compared to the CNN-Prob model.

Figures 16(a) and 16(b) show that both the CNN-Prob and
FNN-Prob models have a yield strength distribution similar to the
ground-truth distribution. Considering the distribution of MAE and
MAPE in the training and test sets, the probabilistic models, espe-
cially the CNN-Prob, provide better matches. Mainly, the MAE is
less than 0.5, and the MAPE is less than 10%. In the case of the FNN-
Prob model, the MAE and MAPE distribution widens in the test set
compared to the training set.

IV. DISCUSSION
A. Comparison of DL models for prediction accuracy

Our comparative analysis between the CNN and FNN models
reveals that the CNN model performs better overall. Despite FNN
demonstrating higher accuracy in the training set, its performance in
the test set is weaker, indicating its limitations in feature extraction
during training.

TABLE IIl. Comparative analysis of predictions between FNN and FNN-Prob models. Values in boldface represent better

outcomes comparing different ML models.

Train Test
ML models MAE MSE MAPE R? MAE MSE MAPE R?
FNN 0.0675 0.0079 0.0116 0.9885 0.1811 0.0538 0.0316 0.9246
FNN-Prob 0.1306 0.0282 0.0226 0.9588 0.2089  0.07178 0.0362 0.8995
a) Yield strength (CNN-Prob) b) MAE (CNN-Prob) c) MAPE (CNN-Prob)
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FIG. 16. Yield strength prediction comparison between CNN-Prob [(a)—(c)] and FNN-Prob [(d)—(f)] models: (a) CNN-Prob predictions, [(b) and (c)] absolute error and
percentage error in CNN-Prob predictions (first row), (d) FNN-Prob predictions, and [(e) and (f)] Absolute error and percentage error in FNN-Prob predictions (second

row).
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TABLE IV. Comparative analysis of Mean Absolute Percentage Error (MAPE) in yield
strength predictions among four ML models. Values in boldface represent better
outcomes comparing different ML models.

MAPE
Percentile 50 75 90 100 (max)
FNN 0.0265 0.0448 0.0662 0.213
FNN-prob 0.0298 0.0528 0.0755 0.213
CNN 0.0259 0.0434 0.0636 0.157
CNN-Prob 0.0238 0.0413 0.0602 0.167
a) MAE
< s CNN g
0.4 v FNN -
= CNN-Prob
e FNN-Prob’ v
w0.3 ..
. T
.« 3 i
0.2 T gy * o v a 0
« o 8§ = i
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To provide a detailed comparison, we present the percentile
distribution of MAE and MAPE in Table ['V. In the test set, the 50th
percentile MAE for FNN is 0.151, compared to 0.146 for CNN. The
75th, 90th, and 100th percentiles for FNN are 0.255, 0.391, and 1.059,
respectively, whereas for CNN, these values are 0.246, 0.355, and
0.942. Across all percentiles, the FNN model underperforms com-
pared to the CNN model. The same is true for MAPE, with values of
2.65%, 4.48%, and 6.62% for the 50th, 75th, and 90th percentiles in
FNN, compared to 2.59%, 4.43%, and 6.36% in CNN. Furthermore,
the maximum MAPE for CNN (15.7%) is smaller than that for FNN
(21.3%).

b) MAPE
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FIG. 17. Distribution of (a) absolute errors and (b) percentage errors in yield strength predictions across all four machine learning models, with respect to the magnitude of

yield strength.
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FIG. 18. Atomic model modification by swapping crystalline Cu phase and amorphous CugsZrss phase in a limited region enclosed by the red outline: (a) 2 x 2 units,

(b) 7 x 7 units, (c) 15 x 15 units, and (d) two 5 x 5 units’ areas.
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FIG. 19. Comparison of yield strength predictions, including the means and standard deviation on the modified samples using both (a) CNN-Prob and (b) FNN-Prob models.

In terms of the probabilistic models, the MAE in the test set for
the FNN-Prob model is 0.169, 0.299, 0.443, and 1.556 for the 50th,
75th, 90th, and 100th percentiles, respectively. In contrast, for the
CNN-Prob model, these values are 0.135, 0.235, 0.342, and 0.967.
The CNN-Prob model outperforms the FNN-Prob model across all
percentiles and presents a significant advantage. A similar trend is
observed with MAPE, which is 2.98%, 5.28%, 7.55%, and 21.3% for

the FNN-Prob model and 2.38%, 4.13%, 6.02%, and 16.7% for the
CNN-Prob model. In comparison to their non-probabilistic coun-
terparts, the FNN and FNN-Prob models are closely matched, with
differences typically under 3%, except for the maximum value where
FNN significantly outperforms FNN-Prob. Conversely, the CNN
model generally underperforms compared to the CNN-Prob model,
with the exception of the maximum value.

TABLE ViILI. The architecture of the FNN-Prob model.

TABLE V. The architecture of the FNN model. Layer Size
Layer Size Input (28,28,1)
Full t 1,1, 6272
Input (28,28, 1) u conniec ( )
Full " (1,1, 1568) Full connect (1,1, 1568)
U connec > Full connect (1,1, 784) Full connect (1,1, 784)
Full connect (1,1, 1568)
Full connect (1,1,1) stress Full connect (1,1,64)
Full connect (1,1, 256)
Full ) L1 Full connect (1,1,8)
ul connec 5 Output (1,1,1) std
TABLE VIII. The architecture of the CNN-Prob model.
TABLE VI. The architecture of the CNN model. .
Layer Size
Layer Size
Input (28,28,1)
Input (28,28,1) Convolution (26, 26, 32)
Convolution (26, 26, 32) Convolution (24, 24, 64)
Convolution (24, 24, 64) Max-pool (12,12, 64)
Max-pool (12,12, 64) Convolution (10, 10, 128)
Convolution (10, 10, 128) Convolution (8, 8, 256)
Convolution (8, 8, 256) Max-pool (4, 4, 256)
Max-pool (4, 4, 256) Full connect (1, 1, 4096) Full connect (1, 1, 4096)
Full connect (1, 1, 4096) Full connect (1,1, 512) Full connect (1,1, 512)
Full connect (1, 1, 500) Output (1,1, 1) stress Full connect (1,1, 64)
Output (1,1, 1) Output (1,1,1) std
2,016112-14
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Additionally, we plotted the relationship between yield strength
and the Mean Absolute Error (MAE) and Mean Absolute Percent-
age Error (MAPE) in Fig. 17. In general, the error tends to be
larger when the yield strength is either small or large, while sam-
ples with medium yield strength exhibit smaller errors. Comparing
the various models, it is clear that those incorporating uncertainty
(i.e., FNN-Prob and CNN-Prob) yield more uniform results than
the conventional CNN and FNN models. For instance, the FNN
model typically exhibits smaller errors than FNN-Prob when the
yield strength is greater than 4.5 GPa. Conversely, when the yield
strength is less than 4.5 GPa, FNN-Prob demonstrates much smaller
MAE and MAPE values than the standard FNN model. We also
found that CNN-Prob generally has the lowest MAE and MAPE
among all four models. However, when the yield strength falls below
4 GPa, CNN-Prob performs worse than the standard CNN model,
which exhibits the smallest error at this point. This phenomenon
can be attributed to the fewer training data points at both ends of
the scale, which can lead to larger errors in the machine learning
predictions.

B. Generalizability of uncertainty-integrated
ML models to unseen samples

In addition to the samples in the test set, we also sought to test
the generalizability of the model. First, we selected samples from
the test set. Then, we selected one or two square regions, with the
length of the square ranging from 2 to 15 (given that the length of
the atomic model is 28 units). We also tried to use two 5 x 5 units’
regions instead of just one. Finally, within this square region, the
material was converted. If initially it was a crystalline Cu phase, it
was replaced by the amorphous CugsZrss phase, and if it was ini-
tially an amorphous CugsZr3s phase, it was changed to a crystalline
Cu phase. The new structure is shown in Fig. 18, where the material
phase in the red square has been switched.

The predicted results for these modified samples are shown in
Fig. 19. We tested both CNN-Prob and FNN-Prob models. Initially,
when the area change is small, both models are able to provide rel-
atively accurate predictions, even if the area is two squares instead
of one. However, when the length of the square exceeds 9 x 9 units,
the prediction accuracy of these two models decreases. It should be
noted that the size of the modified region exceeding 9 x 9 units rep-
resents a change of about 30% of entire models without additional
training for unseen samples. Compared to the FNN-Prob model,
the CNN-Prob model behaves better in predicting the yield strength
of samples with the modified region exceeding 9 x 9 units. This
analysis indicates that while our model maintains accuracy with
minor sample disturbances, its uncertainty quantification becomes
less reliable under conditions of large disturbance. This contrasts
with traditional methods, which typically lack uncertainty quantifi-
cation, highlighting both the advancements and limitations of our
approach.

V. CONCLUSIONS

In conclusion, this study has successfully presented a deep
learning framework capable of predicting various mechanical prop-
erties for nanocomposite materials while also integrating quantified
uncertainty into the predictions. We have demonstrated the efficacy

pubs.aip.org/aip/aml

of our machine learning models, both FNN and CNN models, in
predicting yield strength and ultimate tensile strength, offering a less
computationally intensive alternative to traditional methods, such as
molecular dynamics simulations.

While MD simulations provide detailed insights, they are com-
putationally intensive. For instance, in our study, conducting a single
sample MD simulation using LAMMPS on bigred200 (AMD EPYC
7742) with 4 x 48 central processing unit (CPU) configuration
requires ~1 h. In contrast, training our neural network model takes
about the same time (1 h) but on a single v-100 graphics processing
unit (GPU). However, once trained, the neural network model can
predict properties for a new sample in under 0.5 s. This represents a
drastic reduction in time, particularly beneficial when dealing with
large datasets or when rapid predictions are essential.

Our models, trained on comprehensive material datasets, allow
for rapid exploration of design spaces and make more reliable pre-
dictions by including a measure of uncertainty. The addition of
uncertainty quantification not only enhances the confidence in our
predictions but also provides a greater understanding of the predic-
tion variance, a vital feature when making decisions based on these
predictions in practical engineering applications.

Furthermore, our work exhibits how the standardization and
generalization of these models can provide invaluable insights into
the structure-property relationships of nanocomposite materials.
The deep learning framework developed here has the potential appli-
cability to predict diverse properties across a broad spectrum of
materials, thereby holding promise for future research in the field
of materials science and engineering.

Ultimately, this research paves the way for advancements in the
prediction of nanocomposite materials’ properties and sets a prece-
dent for integrating uncertainty quantification in machine learning
models within this field, promoting a more robust and reliable
paradigm for materials property prediction. Building on the founda-
tions of this study, our future research will focus on advancing deep
learning architectures and expanding the material scope beyond
nanocomposites. A significant emphasis will be placed on real-world
experimental validation to enhance the practical applicability of
our models. To achieve this, we can utilize experimental images
from advanced characterization techniques like Scanning Electron
Microscopy (SEM) and Scanning Transmission Electron Micro-
scopy (STEM). Additionally, mechanical property data obtained
from nano-testing methods, particularly nanoindentation, will be
crucial for providing property data to validate and refine our devel-
oped models. We will also explore model interpretability and engage
in industry collaborations to align our research with practical needs.
Additionally, efforts will be made to augment and diversify our data
sources and integrate our neural network approach with other com-
putational methods, aiming to create a more versatile and robust tool
for material property prediction and analysis in material science.
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